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The most well-grounded hypothesis for description of creep in metals is Rabotnov's 
theoryof kinetic equations with structural parameters [I]. In the absence of any 
strengthening effect the simplest case is that of similarity of the creep diagrams in 
different directions, where p(t) = r with p being the creep deformation; t, the 
current time; o, stress; tf, time to failure. To describe such a creep process (second 
and third stages) only one structural parameter is needed. There exist three well-tested 
phenomenological relationships [2, 3], [4-6], [7, 8]: 

= Camexp (ap), p(O) = O, ( 1 )  

where C, m, ~ are constants of the material and the dot above indicates differentiation 
with respect to time, temperature being assumed constant; 

t 

where A(t)= ~odp 
o 

of the material; 

~4 = Corn/(A, - -  A) a, A (0) = O, ( 2 ) 

i s  t h e  s p e c i f i c  s c a t t e r i n g  e n e r g y  o f  t h e  c r e e p  p r o c e s s ;  A, i s  a c o n s t a n t  

p = comp  r p(O) = 0 (0 < o~ < t). (3) 

Equation (3) is based on Grekhem's exponential law of accelerating creep (p % t k, k > i), 
which is found in nickel alloys (El 437B (see Eq. (22)), E1 617, E1 867, Nimonic, and 
others [7, 8]) at a high stress level (before the breakpoint in longterm strength curves). 

In the general case creep curves show a hardening stage. In [9, 10], following 
Andrade's hypothesis [4] the total creep deformation PZ was represented as the sum of the 
component now under consideration and the first stage deformation PI: PZ = Pl + P" For 
constant stresses the creep process in pure metals and some alloys (Nimonic 80A, chromium- 
nickel austenic steels, etc.) shows two deformation components with the second satisfying 
Davis's exponential disordering law 

p =  Kexp(~ ,  (4 )  

where  K, X a r e  i n d e p e n d e n t  o f  t i m e .  Each o f  Eqs.  ( 1 ) - ( 4 )  i s  a p p l i c a b l e  o n l y  over a q u i t e  
na r row r a n g e  o f  t e m p e r a t u r e  and s t r e s s .  The q u e s t i o n  o f  p o s s i b l e  i n t e r s e c t i o n  o f  t h e i r  
a p p l i c a b i l i t y  r a n g e s  i s  i m p o r t a n t ,  s i n c e  i t  i s  n o t  c l e a r  which  o f  t h e  models  i s  t o  be p r e -  
f e r r e d .  Moreove r  ( a s  w i l l  be shown b e l o w ) ,  t h e  models  o f  Eqs.  ( 1 ) - ( 4 )  do n o t  p e r m i t  
c o v e r a g e  o f  t h e  t e m p e r a t u r e - f o r c e  r a n g e  in  which  modern c o n s t r u c t i o n s  must  o p e r a t e .  The 
g o a l  o f  t h e  p r e s e n t  s t u d y  i s  t h e  c r e a t i o n  o f  a c o r r e s p o n d i n g  g e n e r a l i z e d  mode l .  The s i n g l e -  
p a r a m e t e r  model  t o  be d e v e l o p e d  c o n t a i n s  Eqs.  ( 1 ) - ( 4 )  as  s p e c i a l  c a s e s  and has  a w i d e r  
r a n g e  o f  a p p l i c a b i l i t y  t h a n  Eqs.  ( 1 ) - ( 4 ) ;  i t  f o l l o w s  f rom t h e  model  t h a t  t h e  r a n g e s  o f  
a p p l i c a b i l i t y  o f  Eqs.  ( 1 ) - ( 4 )  do n o t  o v e r l a p .  

The s t r u c t u r a l  p a r a m e t e r  o f  t h e  b a s i c  e q u a t i o n s  s h o u l d  n o t  i n v o l v e  t h e  m e c h a n i c a l  
p a r a m e t e r s  ( p ,  A),  b u t  r a t h e r  p h y s i c a l  q u a n t i t i e s  c h a r a c t e r i z i n g  t h e  s t a t e  o f  t h e  m a t e r i a l ' s  
m i c r o s t r u c t u r e  [ 1 1 ] .  In  t h e  g e n e r a l  c a s e ,  g i v e n  s i m i l a r i t y  o f  t h e  c r e e p  d i a g r a m s ,  t h e  k i n e t i c  
e q u a t i o n s  w i l l  have  t h e  form [1] 

p = / @ v ( ~ ) ,  ~ = ~@~(~), ( 5 )  

where a is a structural parameter. The stress dependence can usually be chosen as power-like 
[1] ( s e e  Eqs.  ( 1 ) - ( 3 ) ) .  
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The choice of a function to describe dependence on the parameter a remains open. To 
develop a phenomenological theory of creep knowledge of the physical meaning of the structural 
parameter is not obligatory. Since the experimental parameter a is not defined, models can be 
considered equivalent if the creep deformation calculated by them is identical and the equa- 
tions are defined to the accuracy of an arbitrary (nondegenerate) change of the variable a 
(a = H(x)). Let there exist a converse function ~-I, then for �9 we may choose an arbitrary 

{sufficiently smooth) function (transformation from ~ to the arbitrary ~, is accomplished by 
the replacement of variables a = ~-l[~,(x)]). We take ~(a) = exp(~a). Then consideration 
of any of Eqs. (1)-(4) leads to a function G of the same form (G(a) = exp(<a)) and we write 
Eq. (5) as 

P =  B o ~ Z e x p ( q a ) , P ( O ) : : O , a  : ' L o m e x p ( u a ) , a ( O )  = ao, (6)  
where  B, n ,  q, L, m, K, a0 a r e  c o n s t a n t s  o f  t h e  m a t e r i a l .  

The presence of a power dependence on creep deformation in Eq. (i) can be interpreted 
(according to the theory of thermodynamic fluctuations) [2, 3] as a linear dependence of 
activation energy on the quantity p(~ =~0/T, T is the absolute temperature, ~0 is a 
constant of the material). A similar explanation can be offered for the origin of the 
exponential functions in the model of Eq. (6) - linear dependence of the activation energy 
of the parameter a (q = q0/T, K = <0/T, q0, <0 are constants of the material), which can 
then be interpreted as the characteristic dimension of some developing microdefects. 

Without limiting generality, we take q ! 0, so that the case q < 0 reduces to a replace- 
ment a = -x. Then from the condition ~ ~ 0 and p > 0 it follows that B ~ 0 and L > 0. The 
linear replacement a = clx + c2, containing two arbitrary parameters cl, c 2 does not change 
the form of the equations. Therefore two constants of system (6) (for example L, K) can be 
chosen arbitrarily. We will consider special cases of the model of Eq. (6). 

i. q = ~, so that a .... ao+(L/B) z z= ~-Vdp, ? =n--m and the model of Eq. (6) can be 

written in the form o " 

z =  Bomexp{q(ao @(L /B) z ) } .  ( 7 )  

It is evident that at ~ = 0 (z ~ p) the models of Eqs. (i) and (7) are equivalent. 

Let K # q, q ~ 0, whereupon it is convenient to reduce the model of Eq. (6) to a 
simpler ("canonical") form by a replacement of the variablel= B/IL(q- • x)l: 

p = Do~'lV, p ( O ) =  O , i =  s ign(r)Domlr ,  l (O)=  lo, (8)  

where 

r = q/(q - -  ~ D -  B sign(r) ; 

io:s i+n(r)  l~exPlqao) ; ,  s ign( r ) :{  -+'r>O'i,r<O. 

For the model of Eq. (6) q = 0 is equivalent to r = 0 for the model of Eq. (8). 

2. q < ~(r < 0), so that ~ = ~0 - z and the model of Eq. (8) will be 

== ~a'V(&+ - ~)I,t (9) 

At ~ = -I (z - A) the models of Eqs. (2), (9) coincide to the accuracy of the notation used. 

3. < < 0 (0 < r < i). Then 
i 

= Don(J0 + zf. (i0) 

When ~0 = ) = 0, the second stage of creep is absent and the model of Eq. (i0) becomes 
equivalent to that of Eq. (3). For 9+0 ~ 0 the creep curves have a steady-state stage, as 
found under short-term creep conditions in austenittic steels (see Eq. (20)), magnesium, and 
other heat-resistant alloys [12]. 

4. < = 0 (r = !). 

5. q > < > 0 (r > i). 
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These cases reduce to the solution of Eq. (10), but differ in principle from the previous 
case (K < 0) in that at s = 0 Eq. (I0), like Eq. (3), has only a trivial solution: 
z(t) ~ O .  

Depending on the material in question, any of five cases of the model of Eq. (6) can be 
realized. In this case type 1 (Fig. 1 for titanium alloy), 2 (Eq. (20) for stainless steel), 
4 (Table 1 for s-iron) and 5 (Eqs. (19), (22) for aluminum and nickel alloys) creep pro- 
cesses are usually observed in lengthier tests (hundreds and thousands of hr). 

For a description of longterm strength Eq. (6) must be supplemented by the final condi- 
tion a(tf) where tf is the time to failure): following the hypothesis of [i], we take 
a(tf) = a, = const. We then have a power law for longterm strength log tf = R - m log o 
(where R is a constant of the material) and the model of Eq. (6) satisfies the laws of 
linear summation of degradations and the quantities z, which have been confirmed experi- 
mentally under conditions of similarity of creep diagrams [4]. Moreover, the condition 
referred to corresponds to the criteria p(tf) and A(tf) = const, by which Eqs. (1)-(3) are 
usually supplemented. 

In the general case, it is necessary to define six constants in Eq. (6) (n, m, D, r, 
s s = s Two of these are defined from the longterm strength curve, and four from 
creep curves. At constant stresses, integrating Eq. (8), we obtain 

p = s ign  (r) ~v  tl -- So), I 
~ " I r "  t ) i f ( l - - r )  

z = z o  ~ - i t - ( l , t z 0 )  - IFpJ , ,  r + t ,  
1 - - I "  1 - - r  tf. = ( t  o - -  Z, ) [ ( , - -  1) sign (r) Dotal -1  

l = 1 o exp (Da'nt), } 

if, = in  ( z , / ~ 0 )  ( a , P )  - 1  " =  ~" 

( i i )  

At q = < in Eq. (6) it is convenient to perform the replacement a = xL/B + a0, then 

z = ~ = C~ m exp az, z(0) = x(0 ) = 0. (12) 

Here C = B exp (qa0); ~ = qL/B. For constant stresses, integrating Eq. (12), we have 

P = - -  ~r In { f  - -  [t  - -  exp (-- a z , ) ]  t/tf}, ( 1 3  ) 

tf = [1 -- exp (-- az,)l(ccC~) -l, 

w h e r e  x ,  = x ( t f ) .  

Thus ,  w i t h  c o n s i d e r a t i o n  o f  Eqs .  ( 1 1 ) ,  ( 1 3 ) ,  c r e e p  d e f o r m a t i o n  can  be w r i t t e n  i n  t h e  fo rm 

r =  ~ ( q = x ) :  p = l'o~v I l - - c  , (14 )  

l~----l/a, c = l - - e x p ( - - a x , ) ;  

, < O ( q < . ) :  p = z ~ '  1 -  i -  FU ], ( 1 5 )  

c = t - (z . /zo)~- ' .  I~ = 1t(t  - r); 

0 ~ < r < i ( x < 0 > :  v = i . o ' [ ( l + c t - ~ ) - - l ] .  ( 16 )  

c = ( z , / l o ) l - ' -  l ,  fi = t l ( l  - r);  

[ ( ' ) ]  r = t ( ~ = 0 ) :  y=loa~ exp cTf  - 1  , 

c = In (l,llo); 

( 1 7 )  
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TABLE 1 

, , ,  

11"~-- 

70,3i 
62,4 
56,25 
38,67 

hE., 
1,97 
5,57 

25 
350 

I~, h--1 t2,t7/tf, 
h- 1 

6,42 1" 6,i8 2,06 2,19 
0,48 0,487 
0,036 0,0348 

K.lo --8 

40,14 
29,2i 
22 
8,43 

$,27.I0 ~ 1 2  6 2,8 

39,7 
29,i6 
22,26 
8,4 

TABLE 2 

t/t  f 

0,95 
0,98 
0,995 
t 

l--(l-- o,9946-tt; ~ 

0,58 
0,67 
0,75 
0,79 

i - - (~-- t / t f  ) o,3 

0,59 
0,69 
0,8 
i 

TABLE 3 

s 

T,~ to, kg/~ 2 

�9 450 1,86 
500 i ,92 
550 t,37 

tf (18) 
c = ~ - ( t d z , )  ' - 1 ,  ~ = t l ( r -  t ) .  

In  Eq. (17) t h e  c o n s t a n t  c i s  q u i t e  l a r g e  (c  > 10 [9 ,  1 0 ] ) .  Moreover ,  in  t h e  v i c i n i t y  of  
t = 0 usually p << Pl, therefore Eqs. (4) and (17) prove to be practically identical. Limi- 
tations are introduced only by the approximation of the coefficients of Eq. (4) % = c/tf, 
K = s which follows from Eq. (17). The possibility of such an approximation is demonstrated 
by Table I, which shows values of the coefficients %, K for creep in s-iron (Fe~) at a 
temperature of 542~ [9] and their approximation by the relationships referred to (~ = 2.6). 

Thus, to obtain the model of Eq. (6) it is sufficient to require the correspondence of 
Eq. (5) to one of the four theories of Eqs. (1)-(4). In this case Eq. (6) "automatically" 
contains the other theoreies as well. This is a convincing argument in favor of the 
validity of the kinetic concept proposed. 

The constants y,s163 c, $ of Eqs. (14)-(18) can be found in the following manner. 
The value of y can be calculated from the similarity conditions for the curves p(t)o-~ in 
different directions (in particular, from the condition p(tf)o-Y = const). The constant 
s can be eliminated from the expressions by considering the relationship of the current 
deformation p(t) to its value at some fixed point in time. In the general case the constants 
c and ~ can be determined numerically. 

However in Eq. (15) outside the vicinity of t = tf (Table 2) one can usually use the 
approximation s § ~, i.e., c = i (which corresponds to Eq. (2)); c = I (x, + ~) can also 
be used in Eq. [14) (see Fig. i). For Eq. (16) possible simplifications are s + 0 (see 
Eq. (22)) outside the vicinity of t = 0 (which corresponds to Eq. (3)) or ct/tf << I 
outside the vicinity of t = tf (which is equivalent to steady-state flow theory for short 
term creep [12]). In the cases mentioned it is possible to separate the definitions of 
the variables c and B. The range of the variable r (Eqs. (14)-(18)) is chosen for best 
agreement with experiment. With correct selection of Eqs. (15), (16), or (18) the cal- 
culated value of r usually lies within the interval (-~, 0), (0, i), (i, ~), while with 
incorrect selection it takes on a value close (or tending) to the boundary of the interval 
(r % -~, 0, I, +=). This fact allows Simplification of the calculation case. 

Figures I and 2 show experimental data on the creep of the titanium alloy OT-4 and the 
alloy DI6T [5]. The experimental results are shown by solid lines (in all graphs). The 
tests were performed at constant stresses (with compensation for the change in area of the 
specimen cross section). As follows from the calculations, the creep fo the alloy OT-4 is 
described well at any value of r satifying the condition Irl > i0, so that the value of r 
can be assumed temperature-independent (in the general case, r = f(T) [6]). This indicates 
that the constant r is superfluous, and atype i process is realized I (r = ~). The 
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calculated creep diagrams for the alloy OT-4 were constructed with Eq. (14) (see Table 3 for 
values of constant s c = f(A,), dashed lines; c = i, dash-dot lines. 

The creep characteristics of the alloy DI6T are described best by Eq. (18) with r > i 
(at r > i the error of the approximation comprises 5-10%, while for r < 0 and r = ~ it is of 
the order of 30%). Calculated values for DI6T (see Fig. 2, dashed lines) are described by 
the equation (r = 3) 

A = 0,i7 [(i - -  O , 9 7 5 3 t / t f ) - ~  - -  i ]. ( 1 9 )  

The  d i m e n s i o n s  o f  t h e  n u m e r i c a l  v a l u e s  o f  t h e  c o n s t a n t s  p r e s e n t e d  i n  t h e  e x p r e s s i o n s  c o r r e s -  
p o n d  t o  t h e  d i m e n s i o n s  o f  A, o ,  p ,  t i n d i c a t e d  on t h e  g r a p h s .  

The  r e a s o n  f o r  t h e  a b s e n c e  o f  s i m i l a r i t y  o f  t h e  s t r e s s  d i a g r a m s  may be  t h e  p r e s e n c e  o f  
a f i r s t  s t a g e  ( P I  ~ 0 )  [ 1 ,  9 ,  1 0 ] ,  o r  t h e  r e a l i z a t i o n  o f  a m i x e d  f a i l u r e  p r o c e s s  [ 1 3 ] .  
C h a r a c t e r i s t i c  e x a m p l e s  o f  t h e  l a t t e r  a r e  shown i n  F i g .  3 [14 ]  (Khl8N10T s t e e l )  a n d  F i g .  4 
[7 ]  ( h i g h  t e m p e r a t u r e  n i c k e l  a l l o y  EP437B) .  On t h e  l o n g t e r m  s t r e n g t h  c u r v e  t h e  p o i n t  o f  
transition from one form of failure to the other is "angular" [13] (Fig. 4). In the 
description of longterm strength the classical hypothesis of independence of the various 
failure processes [i] was used. In this hypothesis tf = min tfi (where i enumerates the 

i 
types of failure). The thermodynamic fluctuation theory can serve as a basic for accepting 
the same hypothesis [15] for the corresponding creep processes, than p = Zpi. Each component 
of Pi is described independently by Eqs. (6)-(18). For approximate determination of the 
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TABLE 4 

I I a, kg/mm 2 tf, h tfl ' h tf2, h 

48 0,328 0,328 0,784 
46 0,462 0,462 0,922 
44 0,975 0,975 1,32 
40  1,82 t.,93 1,82 

�9 k g /  - 

30 
26 
2 4  
20 

t f, h- 

i 0 , 3  
15,4 
45,9 
83,7 

tf I ' h 

73,5 
i73 

i730 
6i20 

t f2 , h 

t0,3 
15~4 
45,9 
83,7 

model constants 7i, s ci, $i the method described above was used, but in the stress range 

where the effect of other components pj can be neglected, j # I. The values of the constants 
found can be refined by the successive approximation method. 

The longterm strength curve of KhlSNIOT can be described satisfactorily by a power law 
[16], therefore it was assumed that p = Pl + P2, tf2 = tf. Calculations showed that the 
component Pl is significant only at o = 8 kg/mm 2 (see Fig. 3) and has the form of Eq. (16) 
(r = 2/3). The constants of the component P2, Eq. (15) (r = -2, 3) were determined from the 
creep curves for o = 4, 5, 6 kg/mm 2. The expressions obtained were: 

10, ~6 kg/m 2, (20) 
Pl '=  [0,034 [(t + i,~Tt) 2'5 --  i], d = 8 'kg/n~n z , 

.2  = 1s,8-$ [ t -  ( 1 -  0,9946,/,~f2)0.q. 

W i t h  a p o w e r  a p p r o x i m a t i o n  o f  t h e  q u a n t i t y  t f l  t o  d e t e r m i n e  t h e  c o n s t a n t s  a t  l e a s t  two c r e e p  
curves with the comopnent Pl nonzero are needed. The experimental data consisted were in- 
sufficient to calculate Pl at o # 8 kg/mm 2. As is evident from Fig~ 3, the dashed lines 
constructed with Eq. (20) describe the experimental curves satisfactorily. It follows from 
the data of Table 2 that everywhere but at the point t = tf in Eq. (15) we can take c = 
l(s § ~ ) .  

The longterm strength curve for El 437B (Fig. 4) appear as straight lines with a bend 
point (ab). To calculate creep curves with Eqs. (14)-(18) it is necessary to extend these 
lines into the region indicated by the dashed lines, which leads to errors in determination 
of the values tfl and tf2, Pl and p (especially in the vicinity of the bending point), 
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related to scattering of the experimental results, the influence of which can be reduced 
by using the hypothesis that the quantity tf is a function of some "true" stress (oi), 
which is a random quantity [17]. 

With consideration of this 

_ llg tf, i----i,, 
lg tfi -- [ R i -  m~ ig at, R~-- Ig ~f (21) 

i~t,; Iga t=min 

where i, is a number denoting the type of failure realized. 

For the data considered the following constants were found: R I = 19.7, m I = 12, R 2 = 
9.5, m 2 = 5.7 (o b = 41.8 kg/mm2). Values of the quantities tfl and tf2 calculated with 
Eq. (21) are presented in Table 4. Calculations showed that the component p: has the form 
of Eq. (16) (r = 1/2) with y = 0 and proves to be insignificant at o < 30 kg/mm 2. Therefore 
the initial approximation for the constants of the component P2, Eq. [18) (r = 1.7) with 

= 0, were determined from creep curves at o = 20, 24, 26, 30 kg/mm 2. The expression 

was obtained. It is evident from Fig. 4 that the dashed lines constructed with Eq. (22) 
describe the experimental results satisfactorily. 
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